![]() |
Wasser.de Lexikon Shop |
![]() |
![]() |
![]() |
mehr als 6500 Themen und 31600 Antworten |
![]() |
Zurück zur Übersicht! | ![]() |
Datenschutz | FAQ | Hilfe | Impressum | ![]() |
|||
Kategorie: > Wissenschaft |
Volumen von Wasserdampf | |
Gast (Michael Huber) (Gast - Daten unbestätigt) 20.01.2009 |
Hallo Leute, habe eine dringende Frage bzgl der Volumenänderung bei der Umwandlung von 1L Wasser in Wasserdampf. Nach der Formel V = m * R * T / M / p komme ich darauf dass aus 1L Wasser etwa 1,7 Kubikmeter Wasserdampf werden, habe jedoch bei vielen Quellen gelesen dass aus 1L etwa 1,67 m^3 Wasserdampf werden, wie kommt man darauf? Hoffe auf schnelle Antwort |
![]() | |
![]() |
Anzahl der unterhalb stehenden Antworten: 10 |
Gast (Thomas Hinz) (Gast - Daten unbestätigt) 17.03.2009 |
Dieser Text bezieht sich auf den Beitrag von Heiner Grimm vom 15.03.2009! ![]() **danke für die schnelle Antwort ** TH |
![]() | |
![]() |
Heiner Grimm (gute Seele des Forums) 15.03.2009 |
Dieser Text bezieht sich auf den Beitrag von Thomas Hinz vom 15.03.2009! ![]() Hallo Thomas, es geht um die Gleichung zur Berechnung des Volumens idealer Gase: p * V = n * R * T p: Druck in Pa (1 Pa = 1 N/m^2) V: Volumen in m^3 n: Stoffmenge in mol T: Temperatur in K R: universelle Gaskonstante = 8,314 J/(K * mol) Um massebezogen rechnen zu können, wird die Stoffmenge n ersetzt durch die Masse, dividiert durch die Molmasse M: n = m / M, und man erhält: p * V = m / M * R * T "Kann man die Formel auch so interpretieren, dass bei höherer Temperatur und gleichbleibender Masse mehr Wasserdampf entsteht?" "Mehr" wäre stets als größere Stoffmenge oder größere Masse zu interpretieren. Diese ändern sich durch eine Temperaturänderung nicht, es entsteht also nicht mehr Wasserdampf. Der entstehende Wasserdampf nimmt lediglich bei gleichbliebendem Druck ein größeres Volumen ein, oder es erhöht sich der Druck, wenn der Wasserdampf in einem Behälter mit konstantem Volumen eingeschlossen ist. Alle o.a. Aussagen gelten unter der Voraussetzung dass die gesamte Wassermenge dampfförmig vorliegt, und dass der Druck nicht zu hoch ist (bei hohen Drücken kann man i.d.R. die Abweichung der nach der idealen Gasgleichung berechneten Werte von den tatsächlichen Werten nicht mehr vernachlässigen). Grüße, Heiner |
![]() | |
![]() |
Gast (Thomas Hinz) (Gast - Daten unbestätigt) 15.03.2009 |
Hallo wir rätzeln seit einigen Minuten über die genannte Formel: Für welche Einheit steht R und M? Kann man die Formel auch so interpretieren, dass bei höherer Temperatur und gleichbleibender Masse mehr Wasserdampf entsteht? TH |
![]() | |
![]() |
Heiner Grimm (gute Seele des Forums) 22.01.2009 |
Dieser Text bezieht sich auf den Beitrag von Tröpfchen vom 21.01.2009! ![]() Hallo Tröpfchen, "ein Zahlenwert von 1,7 umfasst mathematisch den Bereich von 1,65 bis 1,74." Dies ist wohl eher eine Verabredung der (mit Toleranzen messenden) Naturwissenschaftler als der (mit exakten Zahlen rechnenden) Mathematiker. Bezüglich "mathematisch identisch" habe ich mal gegoogelt, und wie es scheint, wird dieser Begriff praktisch ausschließlich in Bezug auf Gleichungen und Algorithmen gebraucht, nicht in Bezug auf Zahlenwerte. "Der Wert von 1,67 liegt innerhalb dieser Toleranz. Folglich sind 1,7 und 1,67 identisch." Sind sie nicht. (1,67 +- 0,005) ist nicht gleich (1,7 +- 0,05). Allenfalls die hinter diesen Messwerten steckenden tatsächlichen Größen könnten evtl. gleich sein (kann eigentlich nur vorkommen, wenn ein und dieselbe Größe zweimal gemessen wurde). Aber: (1,67 +- 0,005) ist ungefähr gleich (1,7 +- 0,05). Zum konkreten Fall: Nachrechnen für 1,000 l Wasser von 4°C und Dampf von 100°C und 1013 mbar ergibt bei Anwendung der idealen Gasgleichung ein (theor.) Dampfvolumen von 1,700 m^3, 1,000 l Wasser von 20°C ergibt 1,697 m^3 Dampf bei den gleichen Bedingungen. Beides ist nicht gleich 1,67, die Differenz ist auf das nichtideale Verhalten des Wasserdampfes zurückzuführen. Grüße, Heiner |
![]() | |
![]() |
Gast (tröpfchen) (Gast - Daten unbestätigt) 22.01.2009 |
Dieser Text bezieht sich auf den Beitrag von H2O vom 22.01.2009! ![]() Hallo H2O, prima P.S. Dazu fällt mir ein Zitat von Gauss ein: "Der Mangel an mathematischer Bildung gibt sich durch nichts so auffallend zu erkennen, wie durch maßlose Schärfe im Zahlenrechnen." Gruß aus der Pfalz Tröpfchen |
![]() | |
![]() |
H2O (gute Seele des Forums) 22.01.2009 |
Dieser Text bezieht sich auf den Beitrag von Michael Huber vom 21.01.2009! ![]() Bei Wikipedia wird für die Dichte des Wasserdampfs 0,598 kg/m³ angegeben. Es ist daher anzunehmen, dass auch mit diesem Wert gerechnet wurde. Gruß H2O PS: es ist nicht statthaft aus relativ ungenauen Ausgangswerten (1 oder 2 Nachkommastellen) Ergebnisse zu generieren und diese dann bis auf die 3 und 4 Nachkommastelle anzugeben. |
![]() | |
![]() |
Gast (Michael Huber) (Gast - Daten unbestätigt) 21.01.2009 |
Dieser Text bezieht sich auf den Beitrag von Tröpfchen vom 21.01.2009! ![]() Nach meiner Berchnung bei der Dichte von Wasser bei 4 Grad und der Dichte von Wasserdampf von 0,59 komme ich auf 1,695m^3, wird bei wikipedia zum Beispiel dann mit anderen Werten gerechnet? |
![]() | |
![]() |
Gast (Tröpfchen) (Gast - Daten unbestätigt) 21.01.2009 |
Dieser Text bezieht sich auf den Beitrag von Heiner Grimm vom 21.01.2009! ![]() Hallo Heiner, ein Zahlenwert von 1,7 umfasst mathematisch den Bereich von 1,65 bis 1,74. Der Wert von 1,67 liegt innerhalb dieser Toleranz. Folglich sind 1,7 und 1,67 identisch. Etwas anderes wäre es, wenn man von 1,70 ausgeht. Nun, es ist eben alles eine Frage der Genauigkeit. Grüße aus der Pfalz |
![]() | |
![]() |
Heiner Grimm (gute Seele des Forums) 21.01.2009 |
Hallo Michael, hallo Tröpfchen, "Mathematisch sind die Angaben 1,7 m³/kg (oder auch m³/l) und 1,67 m³/kg identisch." Du meinst wahrscheinlich "für den praktischen Gebrauch identisch". Mathematisch identisch bedeutet: bis auf die allerletzte Nachkommastelle irgendwo im Unendlichen, und selbst darauf würde ich als Nichtmathematiker keinen Eid ablegen. Nun zum eigentlichen Kern der Sache: Die Gleichung V=m*R*T/M/p leitet sich aus dem sog. idealen Gasgesetz ab, das streng und exakt nur für ideale Gase gilt. Alle realen Gase weichen mehr oder weniger davon ab, je nach Gas und physikalischen Bedingungen. Grundsätzlich gilt: Je höher die Temp. über der Siedetemp. und je geringer der Druck, umso besser stimmen reales und ideales Verhalten überein. Gase mit großen oder polaren Molekülen (relativ große gegenseitige Beeinflussung) weichen in ihrem Verhalten tendenziell stärker vom idealen Verhalten ab als solche mit kleinen unpolaren Molekülen. Am "idealsten" verhalten sich i.A. die einatomigen Edelgase. Wasserdampf weicht aufgrund seiner stark polaren Moleküle und wegen der meist geringen Differenz (T - Siedetemp.) schon bei Normaldruck deutlich vom idealen Verhalten ab, daher die Differenzen in berechneten und Literaturwerten. Gemessene und berechnete Dichten von W.dampf bei 1, 10 und 100 bar (zum Vergleichen) finden sich auf http://www.wissenschaft-technik-ethik.de/wasser_dichte.html Grüße Heiner |
![]() | |
![]() |
Gast (tröpfchen) (Gast - Daten unbestätigt) 21.01.2009 |
Guten Morgen Michael, wo liegt dein Problem? Mathematisch sind die Angaben 1,7 m³/kg (oder auch m³/l) und 1,67 m³/kg identisch. Also führte deine Literaturrecherche immer zum gleichen Ergebnis. Ich kenne für die Dichte von Wasserdampf einen Wert von 0,59 kg/m³, was 1,69 m³/kg entspricht, also deine Angaben bestätigt. Gruß aus der Pfalz Tröpfchen |
![]() | |
![]() |
Werbung (3/3) | |